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For a one-dimensional "nite elastic continuum with distributed contacts and periodic
boundary conditions, the presence of unstable waves is investigated. The stability of the
waves is evaluated and explanations for instabilities under a constant coe$cient of friction
are provided. A negative slope in the coe$cient of friction as a function of sliding speed is not
a necessary condition for the occurrence of dynamic instability. Dynamic instability occurs
in the form of self-excited, unstable, travelling waves. The stabilizing e!ects of external and
internal damping were studied. Low- and high-frequency terms of the travelling waves are
stabilized by adding external and internal damping respectively. Responses corresponding
to unstable eigenvalues can dominate the system response. It is presumed that this can lead
to squeaking or squealing noise in applications.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

When there is frictional contact between two materials, noise and vibrations are often
generated. They are associated with chattering, squeaking, squealing noise, and stick}slip
oscillations of elastic materials.

In classical studies of the causes for the noise and vibrations, analyses dealing with
discretized mathematical models have prevailed [1}3]. Moreover, most of the causes cited
for steady sliding instabilities have been based on friction}speed relations: a coe$cient of
friction that decreases with sliding speed has played a primary role in the instability of the
system based on linear stability criteria [4}6].

However, according to research by Adams [7, 8] and Martins et al. [9] dynamic
instability, which can generate noise and vibrations, can occur even without a negative
slope in the friction}speed relations. Experimental studies by De Togni et al. [10], Rorrer
et al. [11], and Vallette and Gollub [12] also showed that such dynamic instabilities can
occur in the absence of negative-slope characteristics in friction}speed relations. Because of
couplings in spatial co-ordinates caused by friction stresses, steady sliding motions are
dynamically unstable even when the coe$cient of friction is constant.

In this paper, investigations on the stability of waves of an elastic medium under steady
frictional sliding are presented in order to understand the mechanisms which cause
vibrations and noise. The focus is on the mathematical model of a one-dimensional elastic
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. A schematic diagram for a one-dimensional elastic medium subjected to distributed friction. Friction
between a moving belt and an in"nite elastic medium induces vibrations and noise. A frictionless linear bearing is
installed on top of a medium so as to allow axial motions of an elastic medium.
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system with distributed contacts and periodic boundary conditions. The periodic boundary
conditions are motivated by elastic bushing systems, in which the elastic media are
approximately annular. The annulus is simpli"ed as a one-dimensional rectilinear medium
with periodic boundary conditions. Through evaluations of characteristic solutions of
waves, we show that "nite elastic systems with periodic boundary conditions and a constant
coe$cient of friction can have unstable steady sliding. In addition, the e!ects of external and
internal damping on overall system stability are analyzed.

2. EQUATION OF MOTION

We consider the system shown in Figure (1). A linear elastic medium, placed between
a moving belt and a frictionless linear bearing, represents a one-dimensional, undamped,
continuous system in distributed sliding contact. The friction coe$cient is constant. In
addition, any parameters having random properties, such as roughness of contact surface,
are not included in this development in order to emphasize the dynamic stability e!ects of
uniform properties of materials and structures. Moreover, any non-uniform motions, such
as stick}slip motion or loss of contacts are not included.

The equation of axial motion for a homogeneous undamped linear elastic medium is

A
��

�
(x, t)

�x
#f (x, t)"�

��uL
�t�

, (1)

where A"wh is a cross-sectional area of an elastic medium with constant width w (into the
page) and height h, � is the mass per unit length of the elastic material, �

�
(x, t) is a stress over

the cross-section, uL (x, t) is an axial displacement, and f (x, t) is a friction force per unit length.
Applying a linear stress}strain relationship, stress is expressed as �

�
(x, t)"E�

�
(x, t), where

E is Young's modulus of the material.
Axial stress accompanies a change in cross-sectional area in an open elastic medium,

due to the Poisson e!ect. Since this system is constrained, there is instead a change in
contact normal stress. The friction force including the Poisson ratio e!ect per unit length is
given by

f (x, t)"!�w�
�
(x, t)"!�w��

�
#��

�
(x, t)�, (2)
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where � is a friction coe$cient, �
�
(x, t) is a contact normal stress, and �

�
is a pre-loaded

normal stress per unit length, which should be always less than zero (compression) to
generate friction stress and maintain contact with the sliding rigid body. This distributed
friction force contributes to the axial stresses in the medium through equation (1). Thus, the
friction stress is modelled as proportional to the normal stress. The normal stress consists of
a static load plus a variation due to the axial stress, which through the Poisson e!ect, is
accompanied by variations in pressure on the medium constrained between a sliding surface
and a bearing.

By considering the linear strain}displacement relation, �
�
(x, t)"�uL (x, t)/�x , a

non-dimensional equation of motion is obtained as

��uL *
�xH

�
!	

�uL *
�xH

#	
"

��uL *
�tH�

. (3)

The dimensionless parameters used in equation (3) are 	"�w�l/A"��l/h, 
"!�
�
l/(�E),

u*"u/l, xH"x/l , and tH"t/��l�/(AE) , where l denotes contact length and u*, xH and
tH are the dimensionless displacement, co-ordinate and time respectively. For the sake of
simplicity, the notation * will be neglected in the continuing development.

The periodic boundary conditions

uL (0, t)"uL (1, t),
duL (0, t)
dx

"

duL (1, t)
dx

(4a, b)

are applied.

3. STABILITY ANALYSIS OF ELASTIC WAVES

3.1. UNDAMPED MODEL

For the study of elastic waves, we seek the dynamic equation of motion with respect to
a rigid-body solution of equation (3). As such we let uL (x, t)"u

�
(t)#u(x, t). The rigid-body

solutions u
�
(t)"u

�
#v

�
t#	
t�/2, which in reality would be physically limited by damping

or restraints. We could ground the medium with a distributed spring, but have not done so
for direct comparison with the problem of "xed boundary conditions [13]. (Grounding the
system with springs will a!ect the details in the stability analysis, but we expect the general
phenomena to be similar.)

Continuing, the dynamic equation of motion can be written in self-adjoint form [13] as

�
�x�e���

�u
�x�"e���

��u
�t�

. (5)

Note that the system parameter 	 in equation (5) is constant, which represents a "xed
coe$cient of friction and the Poisson ratio.

Considering periodic boundary conditions (4), solutions are assumed to have the form

u(x, t)"Real�e�����������, (6)

where k is a positive number representing the angular frequency of solutions along the
x-axis, as the term 1/k shows the wavelengths along the x-axis. (We will use the notation
in equation (6) since references from wave dynamics in continua have used such
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notation in their studies.) The integer values of k satisfy the periodic boundary conditions
that were motivated by an annulus of unit non-dimensional circumference.

Generally, c can be a complex value and plays an important role in dynamic system
stability. In the case of a real value of c, pure waves of constant shape are expected. This
implies that conservative non-dispersing waves exist in the elastic medium and the system is
in a neutrally stable state without damping. On the other hand, a complex value of
c contains information about the characteristics of the waves. Writing c"R#Ii, equation
(6) can be expressed as

u(x, t)"Real�e����������e������. (7)

A positive R indicates that there is a wave propagating toward the positive direction and
a positive I indicates that there is an unstable wave which increases in amplitude
exponentially in time. On the other hand, a negative R indicates that there is a wave
propagating toward the negative direction and a negative I indicates that there is a stable
wave which decreases in amplitude exponentially in time. Thereby, the imaginary
component of the characteristic solutions represents the stability of the wave.

The characteristic equation of c obtained by substituting equation (6) into equation (5) is

c�!�1#

	
2�k

i�"0. (8)

The imaginary and real parts of the characteristic solution for c are

R"$�1#�1#(	/2�k)�
2

, (9a)

I"
	

4�kR
"$

	

4�k�(1#�1#(	/2�k)�)/2 .
(9b)

Without friction (	"0), the characteristic solution has pure real solutions for c and the
travelling waves, which retain their wave shapes in time, are pure sinusoidal functions.

When friction is considered, however, the characteristic equation yields general, complex
solutions for c. From the result in equation (9), unstable waves propagate toward the
positive x-axis, as indicated by a positive value R. On the other hand, any waves that
propagate toward the negative x-axis are stable since they have negative imaginary
components in the characteristic solutions.

Figure 2 shows the imaginary and real parts of the characteristic solution corresponding
to an unstable wave as a function of parameter 	. Those solutions are presented with
various undetermined frequency factors k. As 	 increases, i.e., as the coe$cient of friction or
the Poisson ratio increases (or l increases, A decreases) waves travelling toward the positive
x direction (the direction of the moving rigid body) are increasingly unstable in any "nite
sliding velocity. Stable waves are not represented in Figure 2.

Similar trends associated with such unstable travelling waves were found in previous
studies. Regarding the travelling direction of unstable waves, the direction of the moving
rigid body indicates the direction of the unstable waves [7}9]. The instability occurs even if
the coe$cient of friction is constant. By considering an in"nite beam subjected to
distributed friction, which was modelled mathematically as a fourth order partial
di!erential equation, Adams [8] proved that one-dimensional travelling waves cause
systems instability. He included properties representing the asperities of the contact surface
in his modelling.
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Figure 2. The unstable characteristic solutions for the undamped, periodic boundary conditioned model.
(a) Imaginary and (b) real parts of the characteristic solution versus 	 are shown.
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With the aid of this study, it has been analytically shown that "nite elastic systems
subjected to distributed friction and periodic boundary conditions can also be unstable in
the presence of a constant coe$cient of friction. In real situations, such unstable waves are
expected to lead to non-uniformmotions, such as stick}slip oscillations or loss of contact in
materials.

3.2. ADDITION OF EXTERNAL DAMPING

An undamped elastic continuum subject to distributed friction is considered in the
previous section. In this section, e!ects of external damping on system stability are
considered. (External damping is de"ned as a relative dissipation acting between an elastic
material and the ground.) An equation of motion including an external damping coe$cient
d is

�
�x�e���

�u
�x�"e����

��u
�t�

#d
�u
�t�. (10)

Applying solutions of the form of equation (6) and periodic boundary conditions (4), the
characteristic equation is

c�#

di

2�k
c!�1#

	i
2�k�"0. (11)

The real and imaginary parts of the characteristic solution are

R"$r��� cos(�/2), (12a)

I"$r��� sin(�/2)!
d

4�k
, (12b)
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Figure 3. The imaginary part of the characteristic solutions including the external damping coe$cient d. The
maximum value of the imaginary parts is presented in the parameter domains 	 and d. In this example, k"1.
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Figure 4. The real part of the characteristic solution including the external damping coe$cient d. The real part
of the characteristic solution corresponding to the maximum imaginary value is presented in the parameter
domains 	 and d. In this example, k"1.
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where r���"��1!�
�
(d/2�k )���#(	/2�k)�, �"arctan�

	/2�k
1!�

�
(d/2�k)��. This shows that

the characteristic solutions do not have complex conjugate solutions when external
damping d is present.

Since instability is the primary concern of this study, we consider only the maximum
value of imaginary parts in the solution (12b). The maximum value of imaginary
components determines the system stability, since a positive imaginary component
indicates an unstable travelling wave.

Figures 3 and 4 provide the maximum imaginary part and the real part of equation (12)
on the parameter domains 	 and d respectively. In Figure 3, the maximum imaginary part
decreases with decreasing 	 or increasing d. In other words, a reduction of sliding friction, or
an increase in external damping is required to stabilize the system. The travelling wave
speeds, which are represented as the real parts of the characteristic solution, are in#uenced
by 	 and d as shown in Figure 4. The speeds of waves corresponding to the unstable ones
decrease with decreasing 	 or increasing d.

Figure 5 depicts the imaginary parts of c under variations in d for several frequencies
k when 	"1)0. In this example, the overall system, which was unstable due to complex
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Figure 5. The maximum imaginary part of the characteristic solutions including the external damping
coe$cient d: **, k"1; �*, k"2; #*, k"3; ** , k"4; }�}, k"5. In this example, 	"1)0.
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conjugate pairs in the characteristic solutions when d"0)0, becomes a stable system with
su$ciently large external damping d. The complex solutions of c are no longer in the form of
complex conjugate pairs when d is not equal to zero. Beyond the point d"1)0, all
characteristic solutions can have negative imaginary parts, which implies that the system is
fully stable. Low-frequency terms, such as k"1, are more easily stabilized than
high-frequency terms by increasing d, as indicated by the steep negative slopes in Figure 5.
On the other hand, for low d, lower frequency terms are more unstable. All terms became
stable at d"	.

Based on this interpretation, the system can be unstable with both stable and unstable
eigenvalues in its parameters. (For example, the range 0(d(1)0 in Figure 5.) Under such
conditions, responses corresponding to the stable eigenvalues are damped out in time, but
responses corresponding to unstable eigenvalues can dominate the system responses,
presumably generating squeaking or squealing noises and vibrations in experiments.

3.3. ADDITION OF INTERNAL DAMPING

Elastic materials such as rubber contain considerable internal damping. (Internal
damping is de"ned as a relative dissipation of strain energy in the materials.) Usually,
internal damping is stabilizing, but under some conditions, especially when there are
non-conservative forces, internal damping can be destabilizing [14}20]. For the
instability by modal interactions, i.e., the instability accompanied by the collision
of frequencies with changing parameters, it is reported that small internal damping can
be destabilizing. E!ects of internal damping on the system being studied are not clear. In
this section, the e!ects of internal damping, referred to as structural damping, on system
stability are considered.

A stress}strain relation including internal damping is given by

�
�
(x, t)"E�#<�R "E

�u
�x

#<
�uR
�x

, (13)
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where E is the modulus of elasticity and < is the modulus of viscosity of the material.
Applying equation (13) to equations (1) and (2), an equation of motion including internal
damping � is given by

�
�x�e���

�u
�x�#�

�
�x�e���

��u
�x�t�"e���

��u
�t�

, (14)

where � is an internal damping coe$cient de"ned as </AE. The characteristic equation
obtained by substituting a solution of the form of equation (6) into equation (14), and
applying the periodic boundary conditions of equation (4), is

c�#�(2�ki!	)c!�1#

	i
2�k�"0. (15)

The real and imaginary parts of the characteristic solution are

R"$r��� cos(�/2)#
�	
2
, (16a)

I"$r��� sin(�/2)!��k, (16b)

where

r���"��1#��(�
�
	�!��k�)��#�	(1/(2�k)!���k)��, �"arctan�

	(1/(2�k)!���k)
1#��(�

�
	�!��k�)�.

This shows that the characteristic solutions do not have complex conjugate solutions when
the internal damping � exists.

Figures 6 and 7 show the imaginary and real parts of the characteristic solution
corresponding to the maximum imaginary value in the parameter domains 	 and
� respectively. The imaginary parts attain negative values when increasing � or decreasing 	,
as shown in Figure 6. The speed of waves versus � and 	 is shown in Figure 7. From these
results, it is concluded that the system is stabilized by increasing internal damping.

Figure 8 shows the imaginary parts of c under variations in � for several frequencies k.
The system is stabilized beyond the point �"0)025. Note that the high-frequency terms,
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Figure 6. The imaginary part of the characteristic solution including the internal damping coe$cient �. The
maximum value of the imaginary parts is presented in the parameter domains 	 and �. In this example, k"1.
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such as k"5 in Figure 8, are more easily in#uenced and stabilized with increased internal
damping � than low-frequency terms.

4. CONCLUSION

In this study, the dynamic stability of steady frictional sliding in a "nite one-dimensional
system was investigated. Under periodic boundary conditions, unstable travelling waves in
the one-dimensional elastic system were found to be dependent upon a constant coe$cient
of friction and the Poisson ratio. The e!ect of the Poisson ratio enabled the destabilization
of the elastic continuum.

A negative slope in the friction as a function of relative velocity is not a necessary
condition for the occurrence of dynamic instability. This complements previous research
[7}9]. In addition, the characteristic analysis showed that dynamic instability occurs in the
form of self-excited, unstable, travelling waves. The stabilizing in#uences of external and
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internal damping were studied. Low- and high-frequency terms of the travelling waves are
stabilized by adding external and internal damping respectively.
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